Your browser doesn't support javascript.
Шоу: 20 | 50 | 100
Результаты 1 - 20 de 24
Фильтр
Добавить фильтры

Годовой диапазон
1.
EMBO Mol Med ; 14(12): e16876, 2022 Dec 07.
Статья в английский | MEDLINE | ID: covidwho-2248213

Реферат

Rudolf Virchow, the founder of cellular pathology, held that even when physical or chemical investigations yield the laws of physiology or medicine, the anatomist can still proudly state: This is the structure in which the law becomes manifest. In his words, "physiology presupposes anatomy." Pathological anatomy studies, at usual microstructural scales (approximately 1-100 µm), via light microscopic 2D histology, provided many insights into structure-function relationships of health and disease. For example, such studies established the progression of granulomas, bronchial erosions, microcavities, and destructive lung disease in tuberculosis. While histologic studies remain the cornerstone of such efforts, the advent of nano or micro-X-ray computed tomography (n/µCT) has now made it additionally possible to obtain 3D visualizations of soft and hard tissues, while preserving the tissue for additional investigations. This has applications for old as well as new diseases (Katsamenis et al, 2019; Tanabe & Hirai, 2021).

2.
BMJ Glob Health ; 7(6)2022 06.
Статья в английский | MEDLINE | ID: covidwho-1909740

Реферат

The COVID-19 pandemic has underlined the need to partner with the community in pandemic preparedness and response in order to enable trust-building among stakeholders, which is key in pandemic management. Citizen science, defined here as a practice of public participation and collaboration in all aspects of scientific research to increase knowledge and build trust with governments and researchers, is a crucial approach to promoting community engagement. By harnessing the potential of digitally enabled citizen science, one could translate data into accessible, comprehensible and actionable outputs at the population level. The application of citizen science in health has grown over the years, but most of these approaches remain at the level of participatory data collection. This narrative review examines citizen science approaches in participatory data generation, modelling and visualisation, and calls for truly participatory and co-creation approaches across all domains of pandemic preparedness and response. Further research is needed to identify approaches that optimally generate short-term and long-term value for communities participating in population health. Feasible, sustainable and contextualised citizen science approaches that meaningfully engage affected communities for the long-term will need to be inclusive of all populations and their cultures, comprehensive of all domains, digitally enabled and viewed as a key component to allow trust-building among the stakeholders. The impact of COVID-19 on people's lives has created an opportune time to advance people's agency in science, particularly in pandemic preparedness and response.


Тема - темы
COVID-19 , Citizen Science , Community Participation , Data Collection , Humans , Pandemics
3.
Sci Rep ; 12(1): 10492, 2022 06 21.
Статья в английский | MEDLINE | ID: covidwho-1900659

Реферат

Breakthrough infections with SARS-CoV-2 Delta variant have been reported in doubly-vaccinated recipients and as re-infections. Studies of viral spread within hospital settings have highlighted the potential for transmission between doubly-vaccinated patients and health care workers and have highlighted the benefits of high-grade respiratory protection for health care workers. However the extent to which vaccination is preventative of viral spread in health care settings is less well studied. Here, we analysed data from 118 vaccinated health care workers (HCW) across two hospitals in India, constructing two probable transmission networks involving six HCWs in Hospital A and eight HCWs in Hospital B from epidemiological and virus genome sequence data, using a suite of computational approaches. A maximum likelihood reconstruction of transmission involving known cases of infection suggests a high probability that doubly vaccinated HCWs transmitted SARS-CoV-2 between each other and highlights potential cases of virus transmission between individuals who had received two doses of vaccine. Our findings show firstly that vaccination may reduce rates of transmission, supporting the need for ongoing infection control measures even in highly vaccinated populations, and secondly we have described a novel approach to identifying transmissions that is scalable and rapid, without the need for an infection control infrastructure.


Тема - темы
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/prevention & control , Health Personnel , Humans , Infection Control , SARS-CoV-2/genetics , Vaccination
4.
Asian Journal of Medical Sciences ; 13(6):28-34, 2022.
Статья в английский | Academic Search Complete | ID: covidwho-1892572

Реферат

Background: The pandemic of COVID-19 brought sudden change to online teaching from traditional teaching. This online teaching uses various digital tools. Aims and Objectives: To know the appropriateness of this online teaching, what modifications we need in future from the present-day online teaching, a cross-sectional survey was performed on the students of Government Doon Medical, Dehradun (Uttarakhand). Materials and Methods: A cross-sectional online survey was conducted from July 1 to 7, 2020 with participation of 194 medical students to critically evaluate the feedback of online teaching. Results: During pandemic, online mode of teaching such as online discussions, pre-recorded video, and sharing and uploading material was utilized. Students clearly opine a preference for face-to-face interactions and conventional mode of content delivery. Conclusion: The use of online mode of content delivery in medical colleges enriched by experiences during pandemic has ushered medical education in a novel era. However, further rigorous studies are needed to test the viability of a hybrid technique of teaching as an appropriate way ahead in the future. [ FROM AUTHOR] Copyright of Asian Journal of Medical Sciences is the property of Manipal Colleges of Medical Sciences and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)

5.
Med (N Y) ; 1(1): 3-8, 2020 12 18.
Статья в английский | MEDLINE | ID: covidwho-1829206

Реферат

Global approaches towards pandemic control range from strict lockdowns to minimal restrictions. We asked experts worldwide about the lessons learned from their countries' response. Their voices converge on the importance of scientifically guided interventions to limit the spread of SARS-CoV-2 and its impact on human health.


Тема - темы
COVID-19 , COVID-19/epidemiology , Communicable Disease Control , Humans , Pandemics/prevention & control , SARS-CoV-2
6.
Infect Genet Evol ; 102: 105299, 2022 08.
Статья в английский | MEDLINE | ID: covidwho-1821418

Реферат

Pneumonia, an acute respiratory tract infection, is one of the major causes of mortality worldwide. Depending on the site of acquisition, pneumonia can be community acquired pneumonia (CAP) or nosocomial pneumonia (NP). The risk of pneumonia, is partially driven by host genetics. CYP1A1 is a widely studied pulmonary CYP family gene primarily expressed in peripheral airway epithelium. The CYP1A1 genetic variants, included in this study, alter the gene activity and are known to contribute in lung inflammation, which may cause pneumonia pathogenesis. In this study, we performed a meta-analysis to establish the possible contribution of CYP1A1 gene, and its three variants (rs2606345, rs1048943 and rs4646903) towards the genetic etiology of pneumonia risk. Using PRISMA guidelines, we systematically reviewed and meta-analysed case-control studies, evaluating risk of pneumonia in patients carrying the risk alleles of CYP1A1 variants. Heterogeneity across the studies was evaluated using I2 statistics. Based on heterogeneity, a random-effect (using maximum likelihood) or fixed-effect (using inverse variance) model was applied to estimate the effect size. Pooled odds ratio (OR) was calculated to estimate the overall effect of the risk allele association with pneumonia susceptibility. Egger's regression test and funnel plot were used to assess publication bias. Subgroup analysis was performed based on pneumonia type (CAP and NP), population, as well as age group. A total of ten articles were identified as eligible studies, which included 3049 cases and 2249 healthy controls. The meta-analysis findings revealed CYP1A1 variants, rs2606345 [T vs G; OR = 1.12 (0.75-1.50); p = 0.02; I2 = 84.89%], and rs1048943 [G vs T; OR = 1.19 (0.76-1.61); p = 0.02; I2 = 0.00%] as risk markers whereas rs4646903 showed no statistical significance for susceptibility to pneumonia. On subgroup analysis, both the genetic variants showed significant association with CAP but not with NP. We additionally performed a spatial analysis to identify the key factors possibly explaining the variability across countries in the prevalence of the coronavirus disease 2019 (COVID-19), a viral pneumonia. We observed a significant association between the risk allele of rs2606345 and rs1048943, with a higher COVID-19 prevalence worldwide, providing us important links in understanding the variability in COVID-19 prevalence.


Тема - темы
COVID-19 , Community-Acquired Infections , Pneumonia , COVID-19/genetics , Cues , Cytochrome P-450 CYP1A1/genetics , Genetic Predisposition to Disease , Human Genetics , Humans , Pneumonia/genetics , Polymorphism, Single Nucleotide , Risk Factors
7.
Nat Commun ; 13(1): 1726, 2022 04 01.
Статья в английский | MEDLINE | ID: covidwho-1773977

Реферат

Immunization is expected to confer protection against infection and severe disease for vaccines while reducing risks to unimmunized populations by inhibiting transmission. Here, based on serial serological studies of an observational cohort of healthcare workers, we show that during a Severe Acute Respiratory Syndrome -Coronavirus 2 Delta-variant outbreak in Delhi, 25.3% (95% Confidence Interval 16.9-35.2) of previously uninfected, ChAdOx1-nCoV19 double vaccinated, healthcare workers were infected within less than two months, based on serology. Induction of anti-spike response was similar between groups with breakthrough infection (541 U/ml, Inter Quartile Range 374) and without (342 U/ml, Inter Quartile Range 497), as was the induction of neutralization activity to wildtype. This was not vaccine failure since vaccine effectiveness estimate based on infection rates in an unvaccinated cohort were about 70% and most infections were asymptomatic. We find that while ChAdOx1-nCoV19 vaccination remains effective in preventing severe infections, it is unlikely to be completely able to block transmission and provide herd immunity.


Тема - темы
Asymptomatic Infections , COVID-19 , COVID-19/epidemiology , COVID-19/prevention & control , Health Personnel , Humans , Immunization , SARS-CoV-2 , Vaccination
8.
Lancet Infect Dis ; 22(4): 473-482, 2022 04.
Статья в английский | MEDLINE | ID: covidwho-1757985

Реферат

BACKGROUND: SARS-CoV-2 variants of concern (VOCs) have threatened COVID-19 vaccine effectiveness. We aimed to assess the effectiveness of the ChAdOx1 nCoV-19 vaccine, predominantly against the delta (B.1.617.2) variant, in addition to the cellular immune response to vaccination. METHODS: We did a test-negative, case-control study at two medical research centres in Faridabad, India. All individuals who had a positive RT-PCR test for SARS-CoV-2 infection between April 1, 2021, and May 31, 2021, were included as cases and individuals who had a negative RT-PCR test were included as controls after matching with cases on calendar week of RT-PCR test. The primary outcome was effectiveness of complete vaccination with the ChAdOx1 nCoV-19 vaccine against laboratory-confirmed SARS-CoV-2 infection. The secondary outcomes were effectiveness of a single dose against SARS-CoV-2 infection and effectiveness of a single dose and complete vaccination against moderate-to-severe disease among infected individuals. Additionally, we tested in-vitro live-virus neutralisation and T-cell immune responses to the spike protein of the wild-type SARS-CoV-2 and VOCs among healthy (anti-nucleocapsid antibody negative) recipients of the ChAdOx1 nCoV-19 vaccine. FINDINGS: Of 2379 cases of confirmed SARS-CoV-2 infection, 85 (3·6%) were fully vaccinated compared with 168 (8·5%) of 1981 controls (adjusted OR [aOR] 0·37 [95% CI 0·28-0·48]), giving a vaccine effectiveness against SARS-CoV-2 infection of 63·1% (95% CI 51·5-72·1). 157 (6·4%) of 2451 of cases and 181 (9·1%) of 1994) controls had received a single dose of the ChAdOx1 nCoV-19 vaccine (aOR 0·54 [95% CI 0·42-0·68]), thus vaccine effectiveness of a single dose against SARS-CoV-2 infection was 46·2% (95% CI 31·6-57·7). One of 84 cases with moderate-to-severe COVID-19 was fully vaccinated compared with 84 of 2295 cases with mild COVID-19 (aOR 0·19 [95% CI 0·01-0·90]), giving a vaccine effectiveness of complete vaccination against moderate-to-severe disease of 81·5% (95% CI 9·9-99·0). The effectiveness of a single dose against moderate-to-severe disease was 79·2% (95% CI 46·1-94·0); four of 87 individuals with moderate-to-severe COVID-19 had received a single dose compared with 153 of 2364 participants with mild disease (aOR 0·20 [95% CI 0·06-0·54]). Among 49 healthy, fully vaccinated individuals, neutralising antibody responses were lower against the alpha (B.1.1.7; geometric mean titre 244·7 [95% CI 151·8-394·4]), beta (B.1.351; 97·6 [61·2-155·8]), kappa (B.1.617.1; 112·8 [72·7-175·0]), and delta (88·4 [61·2-127·8]) variants than against wild-type SARS-CoV-2 (599·4 [376·9-953·2]). However, the antigen-specific CD4 and CD8 T-cell responses were conserved against both the delta variant and wild-type SARS-CoV-2. INTERPRETATION: The ChAdOx1 nCoV-19 vaccine remained effective against moderate-to-severe COVID-19, even during a surge that was dominated by the highly transmissible delta variant of SARS-CoV-2. Spike-specific T-cell responses were maintained against the delta variant. Such cellular immune protection might compensate for waning humoral immunity. FUNDING: Department of Biotechnology India, Council of Scientific and Industrial Research India, and Fondation Botnar.


Тема - темы
COVID-19 , SARS-CoV-2 , Antibody Formation , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Case-Control Studies , ChAdOx1 nCoV-19 , Humans , Vaccination
9.
PLoS One ; 17(3): e0264785, 2022.
Статья в английский | MEDLINE | ID: covidwho-1745317

Реферат

The variability of clinical course and prognosis of COVID-19 highlights the necessity of patient sub-group risk stratification based on clinical data. In this study, clinical data from a cohort of Indian COVID-19 hospitalized patients is used to develop risk stratification and mortality prediction models. We analyzed a set of 70 clinical parameters including physiological and hematological for developing machine learning models to identify biomarkers. We also compared the Indian and Wuhan cohort, and analyzed the role of steroids. A bootstrap averaged ensemble of Bayesian networks was also learned to construct an explainable model for discovering actionable influences on mortality and days to outcome. We discovered blood parameters, diabetes, co-morbidity and SpO2 levels as important risk stratification features, whereas mortality prediction is dependent only on blood parameters. XGboost and logistic regression model yielded the best performance on risk stratification and mortality prediction, respectively (AUC score 0.83, AUC score 0.92). Blood coagulation parameters (ferritin, D-Dimer and INR), immune and inflammation parameters IL6, LDH and Neutrophil (%) are common features for both risk and mortality prediction. Compared with Wuhan patients, Indian patients with extreme blood parameters indicated higher survival rate. Analyses of medications suggest that a higher proportion of survivors and mild patients who were administered steroids had extreme neutrophil and lymphocyte percentages. The ensemble averaged Bayesian network structure revealed serum ferritin to be the most important predictor for mortality and Vitamin D to influence severity independent of days to outcome. The findings are important for effective triage during strains on healthcare infrastructure.


Тема - темы
COVID-19/mortality , Hospitalization/statistics & numerical data , Adolescent , Adult , Aged , Aged, 80 and over , Bayes Theorem , COVID-19/epidemiology , COVID-19/etiology , Child , China/epidemiology , Female , Humans , India/epidemiology , Machine Learning , Male , Middle Aged , Models, Statistical , Risk Assessment/methods , Risk Factors , Young Adult
11.
Vaccines (Basel) ; 10(1)2021 Dec 31.
Статья в английский | MEDLINE | ID: covidwho-1580341

Реферат

This study elucidated the clinical, humoral immune response and genomic analysis of vaccine breakthrough (VBT) infections after ChAdOx1 nCoV-19/Covishield vaccine in healthcare workers (HCWs). Amongst 1858 HCWs, 1639 had received either two doses (1346) or a single dose (293) of ChAdOx1 nCoV-19 vaccine. SARS-CoV-2 IgG antibodies and neutralizing antibodies were measured in the vaccinated group and the development of SARS-CoV-2 infection was monitored.Forty-six RT-PCR positive samples from the 203 positive samples were subjected to whole genome sequencing (WGS). Of the 203 (10.92%) infected HCWs, 21.46% (47/219) were non-vaccinated, which was significantly more than 9.52% (156/1639) who were vaccinated and infection was higher in doctors and nurses. Unvaccinated HCWs had 1.57 times higher risk compared to partially vaccinated HCWs and 2.49 times higher risk than those who were fully vaccinated.The partially vaccinated were at higher risk than the fully vaccinated (RR 1.58). Antibody non-response was seen in 3.44% (4/116), low antibody levels in 15.51% (18/116) and medium levels were found in 81.03% (94/116). Fully vaccinated HCWs had a higher antibody response at day 42 than those who were partially vaccinated (8.96 + 4.00 vs. 7.17 + 3.82). Whole genome sequencing of 46 samples revealed that the Delta variant (B.1.617.2) was predominant (69.5%). HCWs who had received two doses of vaccine showed better protection from mild, moderate, or severe infection, with a higher humoral immune response than those who had received a single dose. The genomic analysis revealed the predominance of the Delta variant (B.1.617.2) in the VBT infections.

12.
Sci Rep ; 11(1): 23210, 2021 12 01.
Статья в английский | MEDLINE | ID: covidwho-1545637

Реферат

SARS-CoV2 pandemic exposed the limitations of artificial intelligence based medical imaging systems. Earlier in the pandemic, the absence of sufficient training data prevented effective deep learning (DL) solutions for the diagnosis of COVID-19 based on X-Ray data. Here, addressing the lacunae in existing literature and algorithms with the paucity of initial training data; we describe CovBaseAI, an explainable tool using an ensemble of three DL models and an expert decision system (EDS) for COVID-Pneumonia diagnosis, trained entirely on pre-COVID-19 datasets. The performance and explainability of CovBaseAI was primarily validated on two independent datasets. Firstly, 1401 randomly selected CxR from an Indian quarantine center to assess effectiveness in excluding radiological COVID-Pneumonia requiring higher care. Second, curated dataset; 434 RT-PCR positive cases and 471 non-COVID/Normal historical scans, to assess performance in advanced medical settings. CovBaseAI had an accuracy of 87% with a negative predictive value of 98% in the quarantine-center data. However, sensitivity was 0.66-0.90 taking RT-PCR/radiologist opinion as ground truth. This work provides new insights on the usage of EDS with DL methods and the ability of algorithms to confidently predict COVID-Pneumonia while reinforcing the established learning; that benchmarking based on RT-PCR may not serve as reliable ground truth in radiological diagnosis. Such tools can pave the path for multi-modal high throughput detection of COVID-Pneumonia in screening and referral.


Тема - темы
COVID-19/complications , Deep Learning , Expert Systems , Image Processing, Computer-Assisted/methods , Pneumonia/diagnosis , Radiography, Thoracic/methods , Tomography, X-Ray Computed/methods , Algorithms , COVID-19/virology , Humans , Incidence , India/epidemiology , Neural Networks, Computer , Pneumonia/diagnostic imaging , Pneumonia/epidemiology , Pneumonia/virology , Retrospective Studies , SARS-CoV-2/isolation & purification
13.
Science ; 374(6570): 995-999, 2021 Nov 19.
Статья в английский | MEDLINE | ID: covidwho-1526449

Реферат

Delhi, the national capital of India, experienced multiple severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreaks in 2020 and reached population seropositivity of >50% by 2021. During April 2021, the city became overwhelmed by COVID-19 cases and fatalities, as a new variant, B.1.617.2 (Delta), replaced B.1.1.7 (Alpha). A Bayesian model explains the growth advantage of Delta through a combination of increased transmissibility and reduced sensitivity to immune responses generated against earlier variants (median estimates: 1.5-fold greater transmissibility and 20% reduction in sensitivity). Seropositivity of an employee and family cohort increased from 42% to 87.5% between March and July 2021, with 27% reinfections, as judged by increased antibody concentration after a previous decline. The likely high transmissibility and partial evasion of immunity by the Delta variant contributed to an overwhelming surge in Delhi.


Тема - темы
COVID-19/epidemiology , COVID-19/virology , Genome, Viral , Adolescent , Adult , COVID-19/immunology , COVID-19/transmission , Child , Humans , Immune Evasion , India/epidemiology , Molecular Epidemiology , Phylogeny , Reinfection , Seroepidemiologic Studies , Young Adult
14.
Front Microbiol ; 12: 653399, 2021.
Статья в английский | MEDLINE | ID: covidwho-1389208

Реферат

Co-infection with ancillary pathogens is a significant modulator of morbidity and mortality in infectious diseases. There have been limited reports of co-infections accompanying SARS-CoV-2 infections, albeit lacking India specific study. The present study has made an effort toward elucidating the prevalence, diversity and characterization of co-infecting respiratory pathogens in the nasopharyngeal tract of SARS-CoV-2 positive patients. Two complementary metagenomics based sequencing approaches, Respiratory Virus Oligo Panel (RVOP) and Holo-seq, were utilized for unbiased detection of co-infecting viruses and bacteria. The limited SARS-CoV-2 clade diversity along with differential clinical phenotype seems to be partially explained by the observed spectrum of co-infections. We found a total of 43 bacteria and 29 viruses amongst the patients, with 18 viruses commonly captured by both the approaches. In addition to SARS-CoV-2, Human Mastadenovirus, known to cause respiratory distress, was present in a majority of the samples. We also found significant differences of bacterial reads based on clinical phenotype. Of all the bacterial species identified, ∼60% have been known to be involved in respiratory distress. Among the co-pathogens present in our sample cohort, anaerobic bacteria accounted for a preponderance of bacterial diversity with possible role in respiratory distress. Clostridium botulinum, Bacillus cereus and Halomonas sp. are anaerobes found abundantly across the samples. Our findings highlight the significance of metagenomics based diagnosis and detection of SARS-CoV-2 and other respiratory co-infections in the current pandemic to enable efficient treatment administration and better clinical management. To our knowledge this is the first study from India with a focus on the role of co-infections in SARS-CoV-2 clinical sub-phenotype.

15.
Front Med (Lausanne) ; 8: 631769, 2021.
Статья в английский | MEDLINE | ID: covidwho-1389197

Реферат

Background: SARS-CoV-2 infection may not provide long lasting post-infection immunity. While hundreds of reinfections have reported only a few have been confirmed. Whole genome sequencing (WGS) of the viral isolates from the different episodes is mandatory to establish reinfection. Methods: Nasopharyngeal (NP), oropharyngeal (OP) and whole blood (WB) samples were collected from paired samples of four individuals who were suspected of SARS-CoV-2 reinfection based on distinct clinical episodes and RT-PCR tests. Details from their case record files and investigations were documented. RNA was extracted from the NP and OP samples and subjected to WGS, and the nucleotide and amino acid sequences were subjected to genome and protein-based functional annotation analyses. Serial serology was performed for Anti-N IgG, Anti- S1 RBD IgG, and sVNT (surrogate virus neutralizing test). Findings: Three patients were more symptomatic with lower Ct values and longer duration of illness. Seroconversion was detected soon after the second episode in three patients. WGS generated a genome coverage ranging from 80.07 to 99.7%. Phylogenetic analysis revealed sequences belonged to G, GR and "Other" clades. A total of 42mutations were identified in all the samples, consisting of 22 non-synonymous, 17 synonymous, two in upstream, and one in downstream regions of the SARS-CoV-2 genome. Comparative genomic and protein-based annotation analyses revealed differences in the presence and absence of specific mutations in the virus sequences from the two episodes in all four paired samples. Interpretation: Based on the criteria of genome variations identified by whole genome sequencing and supported by clinical presentation, molecular and serological tests, we were able to confirm reinfections in two patients, provide weak evidence of reinfection in the third patient and unable to rule out a prolonged infection in the fourth. This study emphasizes the importance of detailed analyses of clinical and serological information as well as the virus's genomic variations while assessing cases of SARS-CoV-2 reinfection.

18.
Biosens Bioelectron ; 187: 113280, 2021 Sep 01.
Статья в английский | MEDLINE | ID: covidwho-1213052

Реферат

In order to define public health policies, simple, inexpensive and robust detection methods for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are vital for mass-testing in resource limited settings. The current choice of molecular methods for identification of SARS-CoV-2 infection includes nucleic acid-based testing (NAT) for viral genetic material and antigen-based testing for viral protein identification. Host exposure is detected using antibody detection assays. While NATs require sophisticated instrument and trained manpower, antigen tests are plagued by their low sensitivity and specificity. Thus, a test offering sensitive detection for presence of infection as a colorimetric readout holds promise to enable mass testing in resource constrained environments by minimally trained personnel. Here we present a novel HRPZyme Assisted Recognition of Infection by Optical Measurement (HARIOM) assay which combines specificity of NATs with sensitivity of enzymatic assays resulting in enhanced signal to noise ratios in an easily interpretable colorimetric readout. Using this assay, we could detect up to 102 copies of synthetic viral RNA spiked in saliva as a detection matrix. Validating our assay on suspected human subjects, we found concordance with PCR based readouts with visible colorimetric distinction between positive and negative samples in less than an hour. We believe that this assay holds the potential to aid in mass screening to detect SARS-CoV-2 infection by facilitating colorimetric detection with minimal resources and less trained personnel.


Тема - темы
Biosensing Techniques , COVID-19 , Humans , Nucleic Acid Amplification Techniques , RNA, Viral , SARS-CoV-2 , Saliva , Sensitivity and Specificity
19.
Respir Res ; 22(1): 99, 2021 Apr 06.
Статья в английский | MEDLINE | ID: covidwho-1169963

Реферат

BACKGROUND: COVID-19 pneumonia has been associated with severe acute hypoxia, sepsis-like states, thrombosis and chronic sequelae including persisting hypoxia and fibrosis. The molecular hypoxia response pathway has been associated with such pathologies and our recent observations on anti-hypoxic and anti-inflammatory effects of whole aqueous extract of Adhatoda Vasica (AV) prompted us to explore its effects on relevant preclinical mouse models. METHODS: In this study, we tested the effect of whole aqueous extract of AV, in murine models of bleomycin induced pulmonary fibrosis, Cecum Ligation and Puncture (CLP) induced sepsis, and siRNA induced hypoxia-thrombosis phenotype. The effect on lung of AV treated naïve mice was also studied at transcriptome level. We also determined if the extract may have any effect on SARS-CoV2 replication. RESULTS: Oral administration AV extract attenuates increased airway inflammation, levels of transforming growth factor-ß1 (TGF-ß1), IL-6, HIF-1α and improves the overall survival rates of mice in the models of pulmonary fibrosis and sepsis and rescues the siRNA induced inflammation and associated blood coagulation phenotypes in mice. We observed downregulation of hypoxia, inflammation, TGF-ß1, and angiogenesis genes and upregulation of adaptive immunity-related genes in the lung transcriptome. AV treatment also reduced the viral load in Vero cells infected with SARS-CoV2. CONCLUSION: Our results provide a scientific rationale for this ayurvedic herbal medicine in ameliorating the hypoxia-hyperinflammation features and highlights the repurposing potential of AV in COVID-19-like conditions.


Тема - темы
Anti-Inflammatory Agents/pharmacology , COVID-19 Drug Treatment , Drug Repositioning , Hypoxia/drug therapy , Justicia , Lung/drug effects , Plant Extracts/pharmacology , Pneumonia/prevention & control , Pulmonary Fibrosis/drug therapy , Sepsis/drug therapy , Animals , Anti-Inflammatory Agents/isolation & purification , Bleomycin , COVID-19/metabolism , COVID-19/virology , Cecum/microbiology , Cecum/surgery , Cytokines/genetics , Cytokines/metabolism , Disease Models, Animal , Hypoxia/genetics , Hypoxia/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor-Proline Dioxygenases/genetics , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism , Inflammation Mediators/metabolism , Justicia/chemistry , Ligation , Lung/metabolism , Lung/microbiology , Lung/pathology , Male , Mice, Inbred BALB C , Mice, Inbred C57BL , Plant Extracts/isolation & purification , Pneumonia/genetics , Pneumonia/metabolism , Pneumonia/microbiology , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/genetics , Pulmonary Fibrosis/metabolism , RNA Interference , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Sepsis/genetics , Sepsis/metabolism , Sepsis/microbiology , Transcriptome
20.
Lancet ; 397(10282): 1346-1347, 2021 04 10.
Статья в английский | MEDLINE | ID: covidwho-1144999
Критерии поиска